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Simulation of the thermal transfer during an eutectic
melting of a binary solution
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Abstract

The main objective of this paper is to present a model for the heat transfer in the case of the melting of saline binary solution. This model is
applied to calorimetry in order to determine the kinetics of the eutectic melting. The investigated cell containing the solution is a cylinder of a few
mm3 in volume. By simulation, we could replicate the shape of the experimental thermogramms. The validation of the model permits determining
some parameters which are inaccessible due to the small size of the cell, like the space-time evolution of the temperature inside the differential
scanning calorimetry (DSC) sample.
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. Introduction

In the previous works[1–3], we have presented some models
oncerning the heat transfer in the case of a phase change of bi-
ary solutions dispersed within emulsions or micro-emulsions.
he different studies were related to the melting and the crystal-

ization of the dispersed droplets. The objective was to describe
he thermal transfer inside these dispersions in determining the
pace-time distribution of temperature and the local proportion
f transformed droplets in the sample.

Sassi and Sifrini[4,5] have realized a simplified model to
imulate a melting of a saline binary solution by assuming the
niformity of the temperature of the sample. The results of this
odel are qualitative and do not permit to find the shape of the

xperimental thermograms.
In this article, we present a two-dimensional model for the

eat transfer in the case of the melting of a saline binary solution.
his model is applied to calorimetry in order to determine the
inetics of the eutectic melting.

The model that we adopted is based on an enthalpic formu-
ation [6]. This formulation consists in using the local liquid
raction to follow the frontal displacement of melting through

static grid. It allows to treat the phase change without taking

into account explicitly the boundary condition at the solid–liq
interface.

Experiments were performed using solution of ammon
chloride NH4Cl–H2O at the eutectic concentrationXe = 0.195
and the eutectic temperatureTe = −15.7◦C.

2. Binary eutectic phase diagram

Fig. 1 is an example of a salt binary eutectic phase diag
The liquidus line separates the salt solution phase from the
salt solution phase. The solidus line separates the ice–sal
tion phase from the solid salt–ice phase. We note that the so
and liquidus lines can be determined experimentally by me
and cooling samples of different compositions. These two
cross at eutectic point (e) where can coexist the ice cry
those of salt and the salt solution. The eutectic mixture ha
lowest melting point (which is of course, the same as the fr
ing point) the temperature at which the eutectic mixture fre
or melts is known as the eutectic temperatureTe.

3. Study of the DSC thermograms

Apparatus PYRIS DIAMOND differential scannin
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calorimetry (DSC) of Perkin-Elmer will be used in this
study.Fig. 2 represents the sensors or sample carriers of the
a
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Nomenclature

cp specific heat of the eutectic solution (J kg−1 K−1)
cR specific heat of the reference cell (J kg−1 K−1)
h1, h2 external exchange coefficient for the cell

(W m−2 K−1)
LF latent heat of melting of the ice (J kg−1)
LD heat of dissolution of salt in the solution (J kg−1)
T (r, z, t) temperature atr, z andt (◦C)
Te melting temperature (◦C)
Xe eutectic concentration
Xg proportion of the ice which is melted

Greek symbols
β heating rate (◦C min−1)
ρ mass density of the eutectic solution (kg m−3)
ρg mass density of the ice (kg m−3)
λ thermal conductivity of the eutectic solution

(W m−1 K−1)

The principle of DSC was outlined in Ref.[1]. The appara-
tus gives the energy flux dq/dt: the difference between the heat
powers maintaining the plate supporting the active cell contain-
ing the eutectic solution and the plate supporting the reference
cell

dq

dt
=

(
dq

dt

)
active cell

−
(

dq

dt

)
reference

(1)

As indicated in Ref.[1], the power exchanged at the reference
plate is practically constant and equal to (dq/dt)reference= βcR.
WherecR is the specific heat of the reference cell andβ is the
heating rate. So to simplify the model we will omit the second
term from the calculation of dq/dt.

The general pace of the thermogram obtained by calorime-
try in the case of fusion of a pure substance is given byFig.
3. We have modelled the active cell with a cylinder (Fig. 4)
whose dimensions are 2R0 = 4.25 mm for the diameter and
Z0 = 1.1 mm for the height.

The model which we adopted to describe the thermal transfers
during the phase shift of the studied solution is based on an en-
thalpic formulation proposed by Voller and his co-workers[6,7].
This formulation rests on the partition of the volume occupied
by the solution into a finite number of control volumes and the
handwriting the energy conservation in cylindrical coordinates:

ρcp

∂T

∂t
= λ

(
∂2T

∂r2 + 1

r

∂T

∂r
+ ∂2T

∂z2

)
− ρgA

∂Xg

∂t
(2)

whereρ, cp andλ indicate, respectively, the mass density, the
specific heat and the heat conductivity of the eutectic solution.
Xg indicates the proportion of the ice which is melted. The co-
efficientA is given by:

A = LF +
(

Xe

1 − Xe

)
LD (3)

whereLF andLD represent, respectively, the latent heat of fusion
of the ice and the heat of dissolution of salt in the formed solution.

At the time of the phase change, the sample is regarded as
a homogeneous material whose physical properties depend on
t h is
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Fig. 1. Phase diagram for a binary solution.
he salt concentration and of the proportion of the ice whic
elted.
To take into account the air between the solution and the c

f the cell, we consider two different heat exchange coeffic
1 andh2. So, the boundaries conditions are:

∂T

∂r

)
r=0

= 0 (4)

λ

(
∂T

∂r

)
r=R

= h2(T − Tplt) (5)

λ

(
∂T

∂z

)
z=0

= h2(T − Tplt) (6)

λ

(
∂T

∂z

)
z=Z

= h1(T − Tplt) (7)

hereTplt, the temperature of the plates, is programmed t
inear function

plt = βt + T0 (8)

At t = 0 the initial conditions areT (r, z, 0) = T0 and
g(r, z, 0) = 0
Because the thermal conductivity of air is smaller than th

he metal of the cell, we consider that all the energy is transm
o the plate by the lower boundary of the cell. So,dq

dt
is the sum

f the thermal fluxes through the walls of the metallic cell

dq

dt
= −�ihi(Ti − Tplt)�Si (9)

herehi = h1 or h2.
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Fig. 2. Scheme of the head of the calorimeter.

Fig. 3. Typical thermogram for the melting of the eutectic solution.

The finite-difference equations are obtained upon integrating
the governing Eq.(2) over the grid-point cluster shown in
Fig. 5. The resulting finite-volume scheme has the form:

aPTP = aWTW + aETE + aNTN + aSTS + b (10)

with

aW = 2πλwrw�z

�r
(11)

aE = 2πλere�z

�r
(12)

aN = πλn(r2
e − r2

w)

�z
(13)

aS = πλs(r2
e − r2

w)

�z
(14)

aP = ρPcpπ(r2
e − r2

w)�z

�t
+ aW + aE + aN + aS (15)

b = ρPcpπ(r2
e − r2

w)�z

�t
T 0

P − Aρgπ
(r2

e − r2
w)�z

�t

× ((Xg)P − (Xg)0P ) (16)

Fig. 4. Experiment cell an
d scheme of the model.
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Fig. 5. Control volume.

The old (known) values of the PCM temperatures are denoted
by T 0 and the new (unknown) values are denoted byT. The Eq.
(10) is solved iteratively at a given time step, with a TDMA
solver. The second term on the right-hand side of Eq.(2) keeps
track of the latent heat evolution and its driving element is the
proportion of the ice which is meltedXg. This proportion takes
values of (1− Xe) in fully liquid regions, 0 in fully solid regions,
and lies in the interval [0, (1 − Xe)] in the vicinity of the phase
front. In numerical implementation its value is determinated iter-
atively from the solution of the energy Eq.(10). Hence, after the
ith application of the TDMA solver, Eq.(10)can be rearranged
as

aPTP = aWTW + aETE + aNTN + aSTS + ρPcpπ(r2
e − r2

w)�z

�t

× T 0
P − Aρgπ

(r2
e − r2

w)�z

�t
((Xg)iP − (Xg)0P ) (17)

If the phase change is occuring about thePth node (i.e., 0≤
(Xg)P ≤ (1 − Xe) andTP = Te), then the (i+ 1)th estimate of
the proportion of the ice which is melted needs to be updated so
that the left-hand side of Eq.(17) is

aPTe = aWTW + aETE + aNTN + aSTS + ρPcpπ(r2
e − r2

w)�z

�t

×T 0
P − Aρgπ

(r2
e − r2

w)�z

�t
((Xg)i+1

P − (Xg)0P ) (18)
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Fig. 6. Theoretical and experiment thermogram forβ = 2 ◦C/min.

the concentration of the eutecticXe = 0.195. The diagram
of phase of this solution answers the general pace of the
Fig. 1.

The values of physical characteristics required in the different
equations have been determined experimentally or taken in the
literature[8], except the coefficients of heat exchange (h1 and
h2) that have been determined by simulation from exploratory
experiments.

Fig. 6 shows an experimental thermogram for the melt-
ing of an eutectic solution (Xe = 0.195, Te = −15.7◦C), at
2◦C min−1, compared with the calculated thermogram obtained
with our model. The fit between the experimental and the cal-
culated curves is good: the rounded form of the top of the peak
is reproduced and its width is the same.
Substracting Eq.(17) from Eq.(18)yields the following up
ate for the liquid fraction at nodes where the phase chan

aking place:

Xg)i+1
P = (Xg)iP + ω

aP�t(TP − Te)

Aρgπ(r2
e − r2

w)�z
(19)

hereω is a relaxation parameter. This equation is applie
very node after theith solution of the linear system Eq.(10). The

terative solution continues until convergence of the temper
t every time step.

. Numerical and experimental results

For the numerical calculation, we have applied the
edure described in the previous section. We have
he solution of ammonium chloride NH4Cl and water a
d
Fig. 7. Influence of the heating rate on the shape of thermograms.
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Fig. 8. Temperature versus radius forβ = 5◦C/min.

Fig. 7 presents the thermograms obtained by the model in
function of the heating rateβ. These thermograms present peaks
of which the height and width vary in the same direction as the
heating rate. The slope of eutectic fusion remains the same in
the different cases. Whereas them abscisses of the tops of the
various peaks of eutectic fusion increase withβ.

Figs. 8 and 9present the temperaturesT at different point
of the cell and the corresponding proportion of the ice which is
meltedXg versus time.Fig. 8 also includes the corresponding
calculated thermogram. Important temperature differences can
be observed as a function of the radius. These differences can
reach 2.5◦C (β = 5◦C min−1) at certain points. Melting begins
as soon asT = Te but it is very fast near the metallic boundaries
and is slower in the central region. In the central region, the
melting finishes after the instant of the peak maximum. We can

Fig. 10. Influence of ß on the temperature in the center of the sample

note that the temperature differences inside the sample due to
the heat conduction within the solution.

Fig. 10shows that the temperature difference inside cell be-
comes more important as the heating rate increases.

5. Conclusion

In this work, we have presented a two-dimensional model
simulating the fusion (phase of the destocking) of a binary salt
solution NH4Cl–H2O at the eutectic concentration. Despite the
small dimensions of the cell, we have found important temper-
ature gradients, responsible for the shape of the peaks. These
gradients become more and more important as the heating rate
increases. The application of this model to differential scanning
calorimetry has permitted to understand the heat transfer nature
in the investigated samples.
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